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ABSTRACT 
This  whitepaper proposes  OpenFlow: a way for researchers 
to run  experimental protocols  in the networks they use ev- 
ery  day.   OpenFlow is based  on  an  Ethernet switch,  with 
an  internal flow-table, and  a standardized interface to add 
and  remove  flow entries. Our  goal is to encourage network- 
ing vendors  to add  OpenFlow to their switch products for 
deployment in college campus  backbones and wiring closets. 
We believe  that OpenFlow is a pragmatic compromise:  on 
one hand,  it allows researchers to run experiments on hetero- 
geneous switches in a uniform  way at line-rate and with high 
port-density; while on the other hand,  vendors  do not need 
to expose the internal workings of their switches.  In addition 
to allowing  researchers to evaluate their ideas  in real-world 
traffic settings, OpenFlow could  serve  as  a  useful  campus 
component in proposed large-scale  testbeds like GENI.  Two 
buildings   at Stanford  University will  soon  run  OpenFlow 
networks, using  commercial Ethernet switches and  routers. 
We will work to encourage deployment at other schools; and 
We encourage you to consider  deploying  OpenFlow in your 
university network too. 

Categories and Subject Descriptors 
C.2 [Internetworking]:  Routers 

General Terms 
Experimentation, Design 

Keywords 
Ethernet switch, virtualization, flow-based 

1. THE   NEED   FOR  PROGRAMMABLE

NETWORKS 
Networks  have  become  part of the critical  infrastructure 

of our businesses,  homes and schools.  This  success has been 
both a blessing and a curse for networking researchers; their 
work  is more  relevant,  but their  chance  of making  an  im- 
pact is more remote.  The  reduction in real-world impact of 
any  given  network innovation is because  the enormous in- 
stalled base of equipment and  protocols, and  the reluctance 
to experiment with production traffic, which have created an 
exceedingly  high barrier to entry for new ideas.  Today, there 

is almost no practical way to experiment with new network 
protocols (e.g.,  new routing protocols, or alternatives to IP) 
in  sufficiently realistic settings (e.g.,  at scale  carrying real 
traffic) to gain  the confidence  needed  for their widespread 
deployment.  The result is that most new ideas from the net- 
working research community go untried and untested; hence 
the commonly  held belief that the network infrastructure has 
“ossified”. 

Having  recognized  the problem, the networking  commu- 
nity  is  hard   at work  developing   programmable  networks, 
such  as  GENI  [1] a  proposed nationwide  research facility 
for experimenting with new network architectures and  dis- 
tributed systems.   These  programmable  networks call  for 
programmable switches and  routers that (using  virtualiza- 
tion)  can  process  packets  for  multiple  isolated  experimen- 
tal networks simultaneously.   For  example,   in  GENI  it is 
envisaged  that a researcher will be  allocated a  slice  of re- 
sources  across  the whole  network,  consisting  of a  portion 
of network links,  packet processing  elements (e.g.   routers) 
and  end-hosts; researchers program their slices to behave  as 
they  wish.   A slice could  extend  across  the backbone, into 
access  networks, into college campuses, industrial research 
labs,  and  include  wiring closets, wireless networks, and  sen- 
sor networks. 

Virtualized programmable networks could  lower the bar- 
rier to entry for new ideas,  increasing the rate of innovation 
in the network infrastructure. But the plans  for nationwide 
facilities  are  ambitious  (and  costly),  and  it will take  years 
for them to be deployed. 

This whitepaper focuses on a shorter-term question closer 
to home:   As  researchers, how can  we run experiments in 
our campus  networks?   If we  can  figure  out how,  we  can 
start soon  and  extend the technique to other campuses to 
benefit the whole community. 

To meet this challenge,  several  questions need answering, 
including: In the early days, how will college network admin- 
istrators  get comfortable  putting experimental  equipment 
(switches, routers, access  points, etc.)  into their network? 
How  will  researchers control  a  portion  of their local  net- 
work in a way that does not disrupt others who depend  on 
it?   And  exactly what functionality  is  needed  in  network 
switches to enable  experiments?  Our goal here is to propose 
a new switch feature that can help extend programmability 
into the wiring  closet of college campuses. 

One  approach  -  that we  do  not take  -  is  to persuade
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commercial “name-brand” equipment vendors  to provide  an 
open,  programmable, virtualized platform on their switches 
and  routers  so that  researchers can  deploy  new  protocols, 
while  network  administrators  can  take  comfort  that the 
equipment is well supported.  This  outcome is very unlikely 
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in the short-term. Commercial switches and  routers do not 
typically provide  an  open  software platform, let alone  pro- 
vide a means  to virtualize either their hardware or software. 
The practice of commercial networking is that the standard- 
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ized external interfaces are narrow  (i.e., just packet forward- 
ing), and all of the switch’s internal flexibility is hidden. The 
internals  differ  from  vendor  to vendor,   with  no  standard 
platform for researchers to experiment with new ideas.  Fur- 
ther, network equipment vendors  are  understandably ner- 
vous  about opening  up  interfaces inside  their boxes:   they 
have  spent years  deploying  and  tuning fragile  distributed 
protocols and  algorithms,  and  they fear  that new  experi- 
ments will bring  networks crashing  down.   And,  of course, 
open  platforms lower the barrier-to-entry for new competi- 
tors. 

A few open  software platforms already exist, but do not 
have the performance or port-density we need.  The simplest 
example  is a PC  with several  network interfaces and  an op- 
erating system.  All well-known  operating systems support 
routing  of packets  between  interfaces,  and  open-source im- 
plementations of routing protocols exist (e.g.,  as part of the 
Linux  distribution, or from XORP [2]); and  in most cases it 
is possible to modify the operating system to process packets 
in almost  any  manner (e.g.,  using  Click [3]).  The  problem, 
of course,  is performance:  A  PC  can  neither support the 
number of ports needed  for a college wiring closet (a fanout 
of 100+ ports is needed  per box),  nor the packet-processing 
performance (wiring  closet switches process over 100Gbits/s 
of data, whereas  a typical PC  struggles to exceed  1Gbit/s; 
and  the gap between the two is widening). 

Existing platforms with specialized  hardware for line-rate 
processing   are  not quite  suitable  for  college  wiring  clos- 
ets either.   For  example,   an  ATCA-based virtualized pro- 
grammable router called  the Supercharged PlanetLab Plat- 
form  [4] is  under   development at Washington  University, 
and  can  use  network  processors   to process  packets  from 
many  interfaces  simultaneously at line-rate.  This  approach 
is promising in the long-term, but for the time being is tar- 
geted  at large  switching  centers  and  is  too  expensive  for 
widespread  deployment  in  college  wiring  closets.    At the 
other  extreme is NetFPGA  [5] targeted  for use in teaching 
and  research labs.   NetFPGA  is a low-cost  PCI  card  with 
a user-programmable FPGA for processing  packets,  and  4- 
ports of Gigabit Ethernet. NetFPGA is limited to just four 
network interfaces—insufficient for use in a wiring  closet. 

Thus, the commercial solutions are too closed and  inflex- 
ible, and  the research solutions either have  insufficient per- 
formance  or fanout, or are too expensive.   It seems unlikely 
that the research solutions,  with  their  complete  generality, 
can overcome  their performance or cost limitations. A more 
promising approach is to compromise on generality and  to 
seek a degree  of switch flexibility that is: 

• Amenable to  high-performance  and   low-cost  imple- 
mentations. 

• Capable of supporting a broad  range  of research. 

• Assured  to isolate experimental traffic from production 
traffic. 

hw    Flow 
Table 

 
 
 
 
 
 
 
 
 
Figure 1:    Idealized  OpenFlow Switch.    The 
Flow Table is  controlled  by a remote  controller  
via the Secure Channel. 
 

• Consistent with vendors’  need for closed platforms. 

This  paper  describes  the OpenFlow Switch—a  specifica- 
tion that is an initial attempt to meet these four goals. 
 

2.   THE OPENFLOW SWITCH 
The  basic  idea  is simple:   we exploit the fact that most 

modern  Ethernet switches and  routers contain flow-tables 
(typically  built  from  TCAMs) that run  at line-rate  to im- 
plement firewalls, NAT, QoS, and to collect statistics.  While 
each  vendor’s  flow-table is different, we’ve identified an  in- 
teresting common  set of functions that run in many  switches 
and  routers.  OpenFlow exploits this common  set of func- 
tions. 

OpenFlow provides  an open protocol to program the flow- 
table in different switches and  routers.  A network admin- 
istrator can  partition traffic into production and  research 
flows. Researchers can control their own flows - by choosing 
the routes their packets follow and  the processing  they re- 
ceive.  In this way, researchers can try new routing protocols, 
security  models,  addressing schemes,  and  even  alternatives 
to IP. On the same network, the production traffic is isolated 
and  processed  in the same  way as today. 

The  datapath of an  OpenFlow Switch consists of a Flow 
Table, and  an  action  associated  with  each  flow entry.  The 
set of actions supported by  an  OpenFlow Switch is exten- 
sible,  but below  we  describe   a  minimum requirement  for 
all  switches.  For  high-performance and  low-cost the data- 
path must have  a carefully  prescribed degree  of flexibility. 
This means forgoing the ability to specify arbitrary handling 
of each  packet and  seeking  a more  limited, but still useful, 
range of actions.  Therefore, later in the paper, define a basic 
required set of actions for all OpenFlow switches. 

An OpenFlow Switch consists of at least three parts: (1) 
A Flow Table,  with an action associated  with each flow en- 
try, to tell the switch how to process  the flow, (2) A Secure 
Channel that connects  the switch  to a remote  control  pro- 
cess (called  the controller), allowing  commands and  packets
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to be sent between a controller and the switch using (3) The 
OpenFlow  Protocol, which  provides  an  open  and  standard 
way for a controller to communicate with a switch.  By speci- 
fying a standard interface (the OpenFlow Protocol) through 
which  entries  in the Flow  Table  can  be defined  externally, 
the OpenFlow Switch avoids the need for researchers to pro- 
gram  the switch. 

It is useful to categorize switches into dedicated OpenFlow 
switches that do not support normal  Layer  2 and  Layer  3 
processing,  and OpenFlow-enabled general purpose  com- 
mercial  Ethernet switches and  routers, to which  the Open- 
Flow Protocol and  interfaces have been added  as a new fea- 
ture. 

 
Dedicated OpenFlow switches. A dedicated OpenFlow 
Switch is a dumb  datapath element that forwards  packets 
between ports, as defined by a remote control process.  Fig- 
ure 1 shows an example  of an OpenFlow Switch. 

In this context, flows are broadly defined,  and  are limited 
only by the capabilities of the particular implementation of 
the Flow  Table.  For  example,  a flow could  be a TCP con- 
nection,  or  all  packets  from  a  particular  MAC  address  or 
IP  address, or all packets  with  the same  VLAN  tag, or all 
packets from the same switch port. For  experiments involv- 
ing non-IPv4 packets, a flow could be defined as all packets 
matching a specific (but non-standard) header. 

Each  flow-entry  has  a  simple  action  associated  with  it; 
the three basic  ones (that all dedicated OpenFlow switches 
must support) are: 

 
1.  Forward this flow’s packets to a given port (or ports). 

This  allows packets to be routed through the network. 
In most switches this is expected to take place at line- 
rate. 

 

2.  Encapsulate and  forward  this flow’s packets to a con- 
troller.   Packet  is delivered  to Secure  Channel, where 
it is encapsulated and  sent to a controller.  Typically 
used  for the first packet in a new flow, so a controller 
can  decide  if the flow should  be  added   to the Flow 
Table.  Or  in  some  experiments, it could  be  used  to 
forward  all packets to a controller for processing. 

 

3.  Drop  this flow’s packets.  Can  be used  for security, to 
curb  denial  of service  attacks, or  to reduce  spurious 
broadcast discovery  traffic from end-hosts. 

 
An entry in the Flow-Table has three fields:  (1) A packet 

header  that defines  the flow, (2)  The  action, which  defines 
how  the packets  should  be  processed,   and  (3)  Statistics, 
which  keep  track of the number of packets  and  bytes  for 
each  flow, and  the time since  the last packet matched the 
flow (to help with the removal  of inactive flows). 

In the first generation “Type 0” switches, the flow header 
is a 10-tuple shown  in Table  1.  A TCP flow could  be spec- 
ified by all ten fields, whereas  an IP  flow might not include 
the transport ports  in its  definition.  Each  header  field can 
be a wildcard  to allow for aggregation of flows, such as flows 
in  which  only  the VLAN  ID  is defined  would  apply  to all 
traffic on a particular VLAN. 

The detailed requirements of an OpenFlow Switch are de- 
fined by the OpenFlow  Switch Specification [6]. 

 
OpenFlow-enabled  switches.        Some  commercial 
switches,  routers  and  access  points  will be  enhanced with 

In         VLAN          Ethernet                       IP                    TCP 

Port       ID          SA      DA       Type     SA      DA       Proto    Src    Dst 

 
Table 1:   The header fields matched in a “Type 0” 
OpenFlow switch. 
 
 
the OpenFlow feature  by  adding   the Flow  Table,  Secure 
Channel and  OpenFlow Protocol (we list some examples  in 
Section  5).   Typically, the Flow  Table  will  re-use  existing 
hardware, such as a TCAM;  the Secure Channel and  Proto- 
col will be ported to run  on the switch’s operating system. 
Figure  2 shows a network of OpenFlow-enabled commercial 
switches and  access  points.   In  this example,   all  the Flow 
Tables  are  managed by the same  controller; the OpenFlow 
Protocol allows  a  switch to be  controlled by  two or  more 
controllers for increased performance or robustness. 

Our  goal is to enable  experiments to take place  in an ex- 
isting production network alongside  regular  traffic and  ap- 
plications.  Therefore, to win the confidence  of network ad- 
ministrators,  OpenFlow-enabled switches must isolate  ex- 
perimental  traffic  (processed by the Flow  Table) from  pro- 
duction traffic that is to be processed  by the normal  Layer 2 
and  Layer  3 pipeline  of the switch.  There  are  two ways  to 
achieve  this separation.  One is to add  a fourth action: 
 

4.  Forward this  flow’s packets  through  the switch’s  nor- 
mal processing  pipeline. 

 

The  other is to define  separate sets of VLANs  for  experi- 
mental and  production traffic.  Both approaches allow nor- 
mal production traffic that isn’t part of an experiment to be 
processed  in the usual  way  by  the switch.  All OpenFlow- 
enabled  switches  are  required to support  one  approach or 
the other; some will support both. 
 
Additional features. If a switch supports the header  for- 
mats and  the four  basic  actions mentioned above  (and  de- 
tailed in the OpenFlow  Switch Specification), then we call it 
a “Type 0” switch. We expect that many  switches will sup- 
port additional  actions,  for example  to rewrite  portions  of 
the packet header  (e.g.,  for NAT,  or to obfuscate addresses 
on  intermediate  links),   and  to map  packets  to a  priority 
class.  Likewise,  some Flow  Tables  will be able  to match on 
arbitrary fields in the packet header, enabling  experiments 
with new non-IP protocols.  As a particular set of features 
emerges,  we will define a “Type 1” switch. 
 
Controllers.   A  controller adds  and  removes  flow-entries 
from the Flow Table  on behalf of experiments.  For example, 
a  static controller  might  be  a  simple  application  running 
on  a PC  to statically  establish  flows to interconnect  a set 
of test computers  for  the duration  of an  experiment.    In 
this case  the flows resemble  VLANs  in current networks— 
providing a simple mechanism to isolate experimental traffic 
from  the production  network.  Viewed  this  way,  OpenFlow 
is a generalization  of VLANs. 

One can  also imagine  more  sophisticated controllers that 
dynamically add/remove flows as an experiment progresses. 
In one usage model,  a researcher might control the complete 
network of OpenFlow Switches and be free to decide how all 
flows are  processed.   A more  sophisticated controller might 
support multiple researchers,  each  with different accounts 
and  permissions,  enabling   them to run  multiple indepen- 
dent experiments on different sets of flows. Flows identified
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addressed in  the context of the Ethane prototype,  which 
used  simple  flow switches and  a central controller [7].  Pre- 
liminary results  suggested  that an  Ethane  controller  based 
on  a  low-cost  desktop PC  could  process  over  10,000  new 
flows per  second  — enough  for a large  college campus.  Of 
course,  the rate at which new flows can be processed  will de- 
pend on the complexity of the processing  required by the re- 
searcher’s  experiment.  But it gives us confidence that mean- 
ingful experiments can  be run.  Scalability  and  redundancy 
are  possible  by  making  a controller (and  the experiments) 
stateless, allowing  simple  load-balancing over multiple sep- 
arate devices.

 

 
OpenFlow                       

OpenFlow-enabled 
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Channel 

Normal 
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 Flow 
Table 

 
 
 
 
 
 

Figure  2:     Example  of   a  network  of   OpenFlow- 
enabled commercial switches  and routers. 

 
 

as  under  the control of a  particular researcher (e.g.,  by  a 
policy table running in a controller) could be delivered  to a 
researcher’s user-level  control program which then decides if 
a new flow-entry should be added  to the network of switches. 

 
3.   USING OPENFLOW 
As a simple example  of how an OpenFlow Switch might be 

used imagine  that Amy (a researcher) invented Amy-OSPF 
as  a new  routing  protocol  to replace  OSPF. She  wants  to 
try her  protocol  in a network of OpenFlow Switches,  with- 
out changing  any end-host software.  Amy-OSPF will run in 
a controller; each  time a new application flow starts Amy- 
OSPF picks a route through a series of OpenFlow Switches, 
and  adds a flow- entry in each switch along the path. In her 
experiment, Amy  decides  to use Amy-OSPF for the traffic 
entering the OpenFlow network from her own desktop PC— 
so she doesn’t  disrupt  the network  for others.   To  do this, 
she defines one flow to be all the traffic entering the Open- 
Flow switch through the switch port her PC is connected to, 
and adds a flow-entry with the action “Encapsulate and for- 
ward  all packets  to a controller”.   When  her  packets  reach 
a controller,  her  new  protocol  chooses  a route  and  adds  a 
new  flow-entry  (for  the application  flow)  to every  switch 
along  the chosen  path. When  subsequent packets arrive  at 
a  switch,  they  are  processed  quickly  (and  at line-rate)  by 
the Flow Table. 

There  are  legitimate questions to ask  about the perfor- 
mance,  reliability and scalability of a controller that dynam- 
ically  adds  and  removes  flows as an experiment progresses: 
Can  such  a centralized controller be fast enough  to process 
new flows and  program the Flow  Switches?  What happens 
when a controller fails?  To some extent these questions were 

3.1   Experiments in a Production Network 
Chances  are, Amy is testing her new protocol in a network 

used by lots of other people.  We therefore want the network 
to have  two additional properties: 
 

1.  Packets belonging  to users  other than Amy  should  be 
routed using  a  standard and  tested routing protocol 
running in the switch or router from a “name-brand” 
vendor. 

 
2.  Amy  should  only  be able  to add  flow entries for  her 

traffic, or for any traffic her network administrator has 
allowed  her to control. 

 
Property  1  is  achieved   by  OpenFlow-enabled  switches. 

In  Amy’s  experiment,  the  default  action  for  all  
packets that don’t come from Amy’s PC  could  be to 
forward  them through the normal  processing  pipeline.  
Amy’s own packets would  be forwarded directly to the 
outgoing port, without being processed  by the normal  
pipeline. 

Property  2  depends   on  the controller.    The   controller 
should  be seen as a platform that enables  researchers to im- 
plement various  experiments, and  the restrictions of Prop- 
erty 2 can  be achieved  with the appropriate use of permis- 
sions  or  other  ways  to limit  the powers  of individual re- 
searchers to control flow entries.  The  exact nature of these 
permission-like  mechanisms  will  depend   on  how  the con- 
troller is implemented.   We  expect that a  variety of con- 
trollers will emerge.  As an example  of a concrete realization 
of a controller, some  of the authors are  working  on a con- 
troller  called  NOX  as  a  follow-on  to the Ethane  work  [8]. 
A quite different controller might emerge  by extending the 
GENI  management software to OpenFlow networks. 
 

3.2   More Examples 
As with any experimental platform, the set of experiments 

will exceed  those we can  think of up-front — most experi- 
ments in OpenFlow networks are yet to be thought of. Here, 
for illustration, we offer some  examples  of how OpenFlow- 
enabled  networks could be used to experiment with new net- 
work applications and  architectures. 
 
Example 1:  Network Management and Access Con- 
trol.    We’ll use Ethane  as our  first  example  [7] as it was 
the research that inspired  OpenFlow. In fact, an OpenFlow 
Switch can  be  thought of as  a  generalization  of Ethane’s 
datapath switch.  Ethane used  a specific implementation  of 
a  controller,  suited for  network management and  control, 
that manages  the admittance and  routing of flows. The  ba- 
sic idea  of Ethane is to allow network managers to define a
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network-wide policy  in  the central controller, which  is en- 
forced  directly  by  making  admission  control  decisions  for 
each new flow. A controller checks a new flow against a set 
of rules, such as “Guests can communicate using HTTP, but 
only  via a web proxy”  or “VoIP  phones  are  not allowed  to 
communicate  with  laptops.”   A controller  associates  pack- 
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ets with their senders  by managing all the bindings  between 
names and addresses — it essentially takes over DNS, DHCP 
and  authenticates all users when they join, keeping  track of 
which  switch port (or  access  point) they are  connected to. 
One could envisage an extension to Ethane in which a policy 
dictates that particular flows are sent to a user’s process  in 
a controller, hence allowing  researcher-specific processing  to 
be performed in the network. 

 
Example 2:  VLANs. OpenFlow can easily provide  users 
with their own  isolated network, just as  VLANs  do.   The 
simplest approach is to statically declare  a set of flows which 
specify the ports accessible  by traffic on a given VLAN ID. 
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Normal 
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Secure 
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Flow 
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Traffic  identified as coming  from a single user (for example, 
originating from specific switch ports or MAC addresses) is 
tagged by the switches (via an action) with the appropriate 
VLAN ID. 

A more dynamic approach might use a controller to man- 
age  authentication of users  and  use  the knowledge  of the 
users’ locations for tagging traffic at runtime. 

 
Example 3:   Mobile wireless VOIP clients.  For  this 
example  consider  an experiment of a new call- handoff 
mechanism  for  WiFi-enabled  phones.     In  the experiment 
VOIP  clients establish a new connection over the OpenFlow- 
enabled  network.  A controller is implemented to track the 
location of clients, re-routing connections — by reprogram- 
ming the Flow Tables  — as users move through the network, 
allowing  seamless  handoff  from one access point to another. 

 
Example 4:   A  non-IP network.  So far,  our  examples 
have assumed  an IP network, but OpenFlow doesn’t require 
packets  to be  of any  one  format  —  so  long  as  the 
Flow Table  is able  to match on  the packet header.  This  
would allow experiments using  new naming, addressing and  
rout- ing schemes.   There  are  several  ways an  OpenFlow-
enabled switch can support non-IP traffic.  For  example,  
flows could be identified using their Ethernet header  (MAC  
src and  dst addresses), a new EtherType value,  or at the IP  
level, by a new IP  Version  number.  More  generally, we 
hope  that fu- ture switches will allow a controller to create a 
generic mask (offset  + value  + mask),  allowing  packets  to 
be processed in a researcher-specified way. 

 
Example 5:   Processing packets  rather than flows. 
The  examples  above  are  for experiments involving  flows — 
where  a  controller  makes  decisions  when  the flow  starts. 
There   are,   of  course,   interesting  experiments  to be  per- 
formed  that require  every  packet to be processed.   For  ex- 
ample,   an  intrusion  detection  system  that inspects  every 
packet, an  explicit congestion control mechanism, or when 
modifying  the contents of packets, such as when  converting 
packets from one protocol format to another. 

There   are   two   basic   ways   to  process   packets   in   an 

NetFPGA 
 
 
 
Figure 3:  Example of processing packets through an 
external  line-rate  packet-processing  device, such as 
a programmable NetFPGA  router. 
 
 
ing every  packet to a controller.  This  has the advantage of 
flexibility, at the cost of performance.  It might provide  a 
useful  way  to test the functionality  of a new protocol,  but 
is unlikely  to be of much  interest for deployment in a large 
network. 

The  second  way  to process  packets  is to route  them  to 
a programmable switch that does  packet processing  — for 
example,  a NetFPGA-based programmable router. The  ad- 
vantage is that the packets can  be processed  at line-rate in 
a user-definable way; Figure  3 shows an example  of how this 
could  be done,  in which  the OpenFlow-enabled switch op- 
erates essentially as  a patch-panel to allow  the packets to 
reach  the NetFPGA. In some cases, the NetFPGA board  (a 
PCI  board  that plugs  into a Linux  PC)  might be placed  in 
the wiring closet alongside  the OpenFlow-enabled switch, or 
(more  likely)  in a laboratory. 
 

4.   THE OPENFLOW CONSORTIUM 
The OpenFlow Consortium aims to popularize OpenFlow 

and  maintain the OpenFlow  Switch Specification. The  Con- 
sortium  is a group  of researchers and  network  administra- 
tors at universities and  colleges  who  believe  their research 
mission  will be enhanced if OpenFlow-enabled switches are 
installed in their network. 

Membership  is  open  and   free  for  anyone   at a  school, 
college,  university, or  government agency  worldwide.    The 
OpenFlow Consortium  welcomes  individual members who 
are  not employed   by  companies that  manufacture  or  sell 
Ethernet switches, routers or wireless access points (because 
we want to keep the consortium free of vendor  influence).  To 
join,  send email  to join@OpenFlowSwitch.org. 

1
OpenFlow-enabled network.  First, and  simplest, is to force The Consortium web-site contains the OpenFlow Switch
all of a flow’s packets  to pass  through  a controller.   To  do 
this, a controller doesn’t add a new flow entry into the Flow 
Switch  — it just allows  the switch  to default  to forward- 

Specification,  a list  of consortium  members, and  reference 
implementations of OpenFlow switches. 

 

1 
http://www.OpenFlowSwitch.org
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Licensing Model: The  OpenFlow Switch  Specification 
is free for all commercial and  non-commercial use.  (The  ex- 
act wording  is on the web-site.)  Commercial switches and 
routers  claiming  to be “OpenFlow-enabled” must  conform 
to the requirements of an OpenFlow Type  0 Switch, as de- 
fined in the OpenFlow Switch Specification. OpenFlow is a 
trademark of Stanford University, and  will be protected on 
behalf  of the Consortium. 

 
 

5.   DEPLOYING OPENFLOW SWITCHES 
We  believe  there  is  an  interesting  market  opportunity 

for  network  equipment vendors   to sell  OpenFlow-enabled 
switches to the research community.  Every building  in thou- 
sands   of  colleges  and  universities  contains  wiring  closets 
with Ethernet switches and  routers, and  with wireless  ac- 
cess points spread  across  campus. 

We  are  actively working  with several  switch and  router 
manufacturers who are adding the OpenFlow feature to their 
products by  implementing a  Flow  Table  in  existing hard- 
ware;  i.e.  no hardware change  is needed.   The  switches run 
the Secure  Channel software on their existing processor. 

We  have  found  network  equipment vendors   to be  very 
open to the idea of adding  the OpenFlow feature.  Most ven- 
dors would like to support the research community without 
having  to expose the internal workings  of their products. 

We are  deploying  large  OpenFlow networks in the Com- 
puter Science  and  Electrical  Engineering  departments  at 
Stanford  University.    The  networks  in  two  buildings   will 
be replaced  by switches running OpenFlow. Eventually, all 
traffic  will  run  over  the OpenFlow network,  with  produc- 
tion traffic and  experimental traffic being  isolated on  dif- 
ferent VLANs under  the control of network administrators. 
Researchers will  control their own  traffic,  and  be  able  to 
add/remove flow-entries. 

We also expect many  different OpenFlow Switches to be 
developed  by the research community. The  OpenFlow web- 
site contains “Type 0” reference  designs for several  different 
platforms:  Linux  (software), OpenWRT (software,  for  ac- 
cess points), and  NetFPGA (hardware, 4-ports of 1GE).  As 
more reference designs are created by the community we will 
post them.  We encourage developers  to test their switches 
against the reference  designs. 

All   reference   implementations   of   OpenFlow  switches 
posted on the web site will be open-source and free for com- 

2 mercial  and  non-commercial use. 

6.   CONCLUSION 
We  believe  that  OpenFlow is  a  pragmatic  compromise 

that allows researchers to run experiments on heterogeneous 
switches and  routers in a uniform  way, without the need for 
vendors  to expose  the internal  workings  of their  products, 
or researchers to write vendor-specific control software. 

If we are  successful  in  deploying  OpenFlow networks  in 
our campusses, we hope that OpenFlow will gradually catch- 
on in other universities,  increasing the number of networks 
that support  experiments.  We hope  that a new generation 
of control  software  emerges,  allowing  researchers to re-use 
controllers and  experiments, and  build  on the work  of oth- 
ers.  And  over time, we hope  that the islands  of OpenFlow 
networks at different universities will be interconnected by 
tunnels and  overlay  networks, and  perhaps by  new  Open- 
Flow networks running in the backbone networks that con- 
nect universities to each other. 
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2 
Some  platforms  may  limit  the license  terms  of software 

running on them.  For  example,  a reference  implementation 
on Linux  may  be limited by the Linux  GPL. 
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